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An investigation is carried out with the aid of the Bubnov-Galerkin method of the stabil- 
ity of the stationary convective motion of a binary viscous incompressible mixture in 

a plane thermal diffusion column with respect to normal perturbations. The spectrum 

of the decrements is established vs. the gradient of the wave number of the perturbation 

for Grashof numbers from 0 to 2000. In this motion the existence of monotonic insta- 
bility is proven. The dependence of the critical Grashof number upon the Prandtl, 
Schmidt, wave numbers and other parameters is considered. Comparison with the results 
of experiments is presented. 

In [l-4] investigations are to be found of the behavior of normal perturbations in the 
convective motion of a homogeneous viscous incompressible fluid enclosed between two 
infinite parallel vertical planes and heated to various temperatures. By means of the 

Bubnov-Galerkin method the spectrum of decrements was established in the range 0 < 
< kG < 2.‘,00. It was concluded that in the given range of kG there arises a monotonic 

instability of the steady flow and that oscillatory instability does not occur. 

1, In a plane thermal diffusion column of width 2d and height 2h (h > d) , for a 
constant temperature difference 20 between the walls of the binary mixture, with the 

assumption that c (l- c) = const, far from the ends of the column steady distributions 

of velocity v,,,temperature To and concentration c0 are established [5] as follows: 

‘O = 2~” (sh 2a + sin 2~) 
[shu(l +s)sina(l - s)-sha(1 -x)sinu(l + x)1 

1 

1 1 
co=- 

1+ lfs[G x + a (sh 20 + sin 2~) [cha(l +J)COSU(~ -z)- 

--ha(l--)cosu(l+s)]+++Tz, z’~=z (1.1) 

i 
G=+$, &$t, y=_ f& s= uc(&c)e) 

Here G is the Grashof number, R is the acceleration of gravity, b is the thermal expan- 

sion coefficient, E_’ is the density, Y is the kinematic viscosity coefficient, a - thermal 

diffusivity constant and <T> is the mean temperature. 
The relations (1.1) are presented in nondimensional form. In the present paper the 

following magnitudes will denote the units of the distance, temperature, velocity, time 
and concentration, respectively : 

d,B, vld (G i- Rs), d2! 11, (GIR + s) 

The direction of the coordinate axes and the distribution of quantities ZT,, c, and To , 
for the binary mixture, for .z = 0, are presented in F’ig.1. 

Parameter a, connected with the nondimensional longitudinal concentration gradient 

3c by the relation 
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a0 = II4 (G + Rs)xS (S = v I D) (1.2) 
is defined for the binary liquid mixture by the following equation: 

=A2$-&---$ 

Fig. 1’ 

Here S is the Schmidt number. let there be 

generated in the basic flow small two-dimensional 

perturbations of velocity’ u (t, z, t) , temperature 

6 (I, z, t) and concentrationQ (x,.z, t). lntro- 
ducing the stream function 4 (t, z, t) for the 
perturbed motion we obtain from the equation of 
free convection with consideration of thermal dif- 

fusion [6] the following boundary value problem: 

w 8% 6 aQ Hs 66 - - 
x=z= - az --=(I for s=*l 

G + KS dx 

A=&+2 aq w 9 %=yjy, u,=-- 

Here P is the Prandtl number, the prime indicates differentiation with respect to _LThe 
equations (1.4) are linear with respect to $, 9 and Q with coefficients independent of 

.z and t, therefore normal perturbations are considered of the form 

‘II, (5, 2, t) = CD(r) e-Af+ikz, 6 (‘z, z, t) = T (5) e-hf+ikz 

Q (5, z, t) = N (x) e-ht+ikr (1.5)) 

Here h is the complex decrement, Reh is the parameter for the rate of growth(Reh< 

< 0) or decay (Reh > 0) of the perturbation, ImJ,’ is the frequency of a particular 

oscillation, k is the real wave number. Substituting (1.5) into (1.4), introducing a new 
variable 

C(x) = N(x) - &, T(x) 
and subtracting from the diffusion equation the equation of heat transfer,multiplied by 
Rs/ (G + Rs), we obtain for the amplitudes of perturbations the following equations: 

L, (@, T, C) - AW - ik (G + Rs)EIQ, - T’ - C’ = - hA@ 

L, (cD, T) 3 P-‘AT - ik (G + Rs) (q,T + T,‘(D) = - hT (1.6) 

L3 (c.D, T, C) ES S-iAC - ik (G + Rs) [v,,C + k; - -$& Tlj m] + 

fib 
+ (G + Rs) XW - tc +HSlp AT = - hC 



216 B. I. Nikolaev and A. A. Tubin 

cD(&l)=CD’(t_2)=T(&l)=qf~)=O 

i 
A=$ - k2, H = v,A - van) 

(1.7) 

2. The eigenvalue problem (1.6). (1.7) is solved by the Bubnov-Galerkin method. 

An approximate solution of the problem will be sought in the form of the expansions 

P-l 

CD*= 2 a,,,(~$), T*=qi b,f3!0’, 
W-l 

c*= 2 zig) (Z.lj 
m=o r=o j=O 

Here the coordinate functions cp,(O), Or(O) and ~$(a) represent the eigenfunctions of the 

operators g] related to the operators (1.6) 

Aarp~)+~$Aq+=O, r&‘(~l)=cp$‘(&1)=0 (2.2) 

P-lAi3;'t + @f$) = 0, e'O'(ti)= 0 (2.3) - 
S-IA@ + pj@@ = 0, fj0;.(++0 (2.4) 

moblem (2.2) has even and odd solutions. The even eigenfunctions are: 

ch kx 
cp$L --- 

cos l/x:) - k% 

cos I/p 
(m=O, 2,4,...) m (x”’ > k2) (2.5) 

The decrements of the even perturbations #I’ are derived from the characteristic equa- 

tion 
kthk+&$-ka tgI/x$--kz=O (2.6) 

The odd eigenfunctions cp$ have the form 

sh kz 
cp$’ = shk - 

sin l/x$x& 

JIG 
(m.=1,3,5 ,...) (2.7) 

sin 

(0) 
The spectrum of eigenvalues of the odd perturbations ‘&II is derived from the equation 

-- 
kcth k - fx$) - k2 ctg v’x:’ - k2 = 0 (2.8) 

Equations (2.2) yield the condition of orthogonality 
1 

s 
(PAN, & = 0 n m (n#m) (2.9) 

-1 
The spectrum of eigenvalues 0:’ and the amplitudes ofthe temperature perturbations 

e!“’ , are found for problem (2.3) 

o!O’=P-‘[‘/rns(r+l)s+ka] (r=6,1,2,...) 

f.JCO) = 
~0ar/an(r+1)x (r=0,2,4,...) 

z 
( sin1/a51:(r +I) 5 (r=i7 39 59...) 

(2.10) 

From the symmetry of the operator (2.3) there follows the orthogonality of the temper- 

ature perturbations 
1 

s 
fJwNo~& = 0 
r c (r#cc) (2.11) 

-1 



Stability of convecUve motion of a binary mixture 217 

The spectrum of decrements p(O) and of the normalized perturbations of-concentration 
Et” are found from the bound& value problem (2.4) 3 

l&Y) = s-1 (i/,n”j” + ks) (I’=O, 1,2,...) 

I$’ = 
‘I,?~ (i = 0) 
sin l/snjit (j=i,S,5,...) 
co9 ‘/sniz 0’ = 2.4, 6,. . .) 

(2.12) 

The perturbations of concentration are orthogonal 
1 

s 
.p&Qz = 0 O'y&h) (2.13) 

-1 
In the case of small temperature difference of the walls of the thermodiffusion column, 

the solution of the boundary value problem (1.6). (1. ‘7) can be sought in the form of 
expansion in a series of the small parameter ik (G + Rs). In this case it can be shown 
that the problems (2.2)- (2.4) determine the spectra of decrements #, o$” and ,l@)’ 
of the perturbations in the ‘quiescent liquid when the walls of the thermodiffujion column 
are held at the same temperature. In the same manner as in p] the decrements # 
define isothermal perturbations in the absence of perturbations of concentration. The 
spectrum of the decrements p.$@ define the isothermal concentration perturbations in 
the binary mixture and o, (‘) define the nonisothermal perturbations. 

The analysis of the systems of equations obtained from (1.6) by expansion of the per- 
turbation amplitude (1.5) and of the decrement A in the small parameter ik (G i- RS) 
shows that all odd corrections for the decrements of zero approximation X$?, l.&p’ .and 
CL@’ , are identically zero. Hence the series of eigenvalue h contains only even expo- 
nents of the small parameter Jk (G + &), i.e. h is real. In this manner, for small 
values of the Grashof number .in the thermodiffusion column there arise monotonic per- 
turbations with Zero phase velocity (“standing” perturbations). 

3, According to the Bubnov-Galerkin method we require the orthogonality of the func- 
tions L, &I),*, 
functiom &lj (,TH g;;, 

Fcfyj = 0, i, i, . . . . 

2”:,fr *; rl,:; Le”(~jyr*~ToL;c a) res~;ti~l~)to *e 

u* - l).This leads td thersystem ofiine;r hom;geneous algebraic 
equations 
P-l 

2 CZ,,,[(X$?~-~)~,,,+ ik(G+ Hs)H,~]+q~b,A,,+ XljBnj = 0 
m=o fZ0 j=o 

(n =o, 1,2 ,...( p-i) 

ik (G + Rs) ‘zl amEcm + ‘i b, [(co?’ - h) d,, + ik (G + Rs) II,,] -0 (3.1) 
m=o r=o 

(c=O, 1,2 )...) q-1) 
P-l q-1 

2 a,,,I!k(G i- WWt,m --x(G+ Rs)&,ml + Rs 2 V,,,+ 
m=o (C+Rs)P r=O 

w-1 

+ 2 zj[($) -h)6,j+ik(G+Rs)V,j]=O (h=O,l,Z,...,w-1) 
j=O 

Here 6ij is the Kronecker operator 
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-kk2)-‘kthk(l-kth,k)- l] (n = 0, 4, 4,...) 

-kk2)-1kcthk(l-kcthk)-l] (n=l,3,5,...) 

(3.2) 

(the integrals extend between the limits ff). 
Explicit form of the matrix elements are not presented here because they are too 

cumbersome. 
The conditions of existence of the nontrivial solution of the system (3.1) offers the 

possibility of calculating the eigenvalues h = h (G, P, S, R, S, k). This problem reduces 
to the determination of the eigenvalues of the complex matrix (p + q -t- w) consisting 
of the elements (3.2). The spectrum of the perturbation decrements h was determined 

by the orthogonal-exponent method on a computer. 

4, The computation of the decrements was carried out by using 30 coordinate func- 
tions for the quantities p, q and UI, varied from 8 to 12 in dependence upen the Prandtl 

and Schmidt numbers. As a reault;with the approximation introduced, stable eigenvalues 
of 30 lower levels were obtained in the range 0 < kG < 2000. As in [4], with the increase 
of the Grashof number the convergence of the series (2.1) became worse. In the given 
case the convergence was verified for the decrements computed with 27, 30 and 33 
approximations. Agreement was obtained with sufficient accuracy with 30 and 33 coor- 

dinate functions used. 

. In Figs. 2 and 3 are presented the functional dependence of v/Reh upon the parameter 
1/c for k = 1, S = 3, s = ~xIO-~. R = 200 for two values of the Prandtl number 
P = 1 and p = 0.1 (solid lines are for Xm levels, dashed lines for o, levels. dotted lines 
for pj levels and dot-dashed lines show the real part of the complex conjugate decre- 

ments). 

For small Grashof numbers all decrements are real and positive and consequently, all 
perturbations decay monotonically. With increasing Grashof number, there arises a mu- 
tual interaction of the real levels with the development of the complex conjugate pairs 
(two perturbances propagating with identical but opposite phase velocity). The phase 
velocity of the oscillatory perturbations increases noticeably with increase of the G 
number. The primary merging of the x m and or is observed; the complex conjugate pairs 

kj - Xmand pj- o, rapidly decay with increase of G and, subsequently uj merge 
between themselves only. 

For sufficiently large value of G, the split of any complex conjugate pair xm - o, 
on two real levels is observed. One of these levels in due course intersects the axis G ; 
this leads to monotonic instability of the basic flow. 
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By analogy with [4] there exists a definite dependence-of theeigenvalues spectrum 

on the Prandtl and Schmidt numbers. Thus, for P = 0’.1 (Pig, 3) below XO level, the o, 
levels are absent and decrement -x0 intersects the axis G independently of presence of 

Pj,levels in this region. This results in instability of the steady flow. 

6 

Fig. 2 Fig. 3 

6. In Figs. 2 and 3, the point of intersection of the axis G by real level determines 

the critical Grashof number G, (k = 1) separating the region of stable values of G from 

the unstable values with respect to “standing” perturbations. In Fig. 4a are plotted the 

neutral curves k = k ( mi) (Imi=O, O<kG < 2000) for two values of the Prandtl num- 
ber: Curve 1 for @ = 5 and Curve 2 for P = 0.1. As was to be expected. instability of 
the basic flow is generated by perturbations with large wavelengths. The smallest wave 
length for unstable perturbations equals 3.5 d. The wave number at which the smallest 

critical Grashof number is attained is approximately 1.4 and it varies but slightly with 
,’ 

k 

Fig. 4 
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Schmidt number in the range 0.01 < S < 10 and- with Prandtl number in-the range 
0.01 < P < 1O.This agrees with the findings of [4]. 

In Fig,4b are plotted the critical Grashof number as a function of the logarithm of 
Prandtf number for two values of the wave number : Curve 2 for k = 1, Curve 2 for 
k = 1.4. The variation of the critical Grashof number amounts to not more than 1% for 
a variation of Schmidt number in the range 0.01 < S < $0. Within the given approxi- 
mation it does not appear possible to investigate the spectra of decrements for P > 10 
or S > 10 for reasons discussed in [4]. 

In Fig.4~ is plotted the minimum critical Grashof number as a function of the thermo- 
diffusion parameter s for two~values of Prandtl number: Cnrve I for P = 5 and Curve 
2 for P = 0.1. An increase of the thermodiffusion constant brings about some increase 
of the stability of the basic fiow. A corresponding relationship exists for the variation 

of R in the range 1 < R < 104. 
The weak dependence of the critical Grashof number.upon the Prandti and Schmidt 

numbers, the therm~iff~ion parameter s and upon R and also the character of behavior 
of the spectra of decrements justify the conclusion that the instability of the convection 
current of a binary mixture in a thermodiffusion column is related to the hydrodynamic 
instability of the interface of the opposite convective currents 181. 

In Ip3 an experimental investigation has been presented of the instability of laminar 
flow in a ~erm~if~ion column, carried out with a gas of P == 0.8. The experiment 
based upon the recognition of the critical nature of heat transfer across a layer of gas 
has shown that convective fiow is stable up to G, = 585, although it does not appear 
possible to draw a definite conclusion in regard to the nature of the instability encoun- 
tered in this kind of experiment. The theoretical calculation carried out for the same 
PrandtI number gave a minimum critical Grashof number pertaining to “standing” per- 
turbations G, = 505. 

The authors wish to thank Kh. Ikramov, R, N. Rudakov and V. A. Timofeev for their 
help in the accomplishment of this paper. 
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